

Figure 1: Team Logo

Steel Bridge Team

Final Presentation

Kayley Adams, George Beamish, Emmanuel James, Andrew Samson

April 26th, 2019

CENE 486C

Project Background

- American Institute of Steel Construction (AISC) Student Steel Bridge Competition (SSBC)
 - ♦ Conference Host: Cal Poly SLO
 - \Rightarrow April 4th- 6th 2019
- Objective: design and build
 - a 1:10 scale bridge

Student Steel Bridge Competition PACIFIC SOUTHWEST REGIONAL EVENT

Cal Poly, San Luis Obispo April 4-6, 2019

Figure 2: AISC SSBC Event Logo [1]

Project Understanding

 Technical Considerations
 \$ 50lb lateral load
 \$ 2500lb vertical load

- ♦ All members must fit in 3'-6" x 6" x 4" box
- All members
 connected by bolt and
 nut

Figure 3: Vertical Load locations [1]

Table 1: Load combinations [1]

Ν	L1	L2	S
1	11'-0"	6'-0"	11'-6"
2	12'-0"	8'-0"	11'-6"
3	13'-6"	10'-0"	0'-0"
4	14'-0"	8'-4"	0'-0"
5	14'-6"	10'-8"	0'-0"
6	15'-5"	10'-5"	11'-6"

Competition Details

Thursday April 4th – Display
 Aesthetics only

♦ Used as a tiebreaker

Saturday April 6th – Main Competition
 Efficiency
 Stiffness – lateral/vertical deflection
 Weight
 Economy – construction time/builders
 Overall Performance

4

NOTE 3 NOTE 3 GING ARD 6 STRUC: ZONE 15-0" TRANSPORTATION ZONE 88 6.0 10'-0" 5'-0" 6'-0" 12-0" 20'-0" 6'-0" NOTE 2

Figure 4: Construction Site Plan for Competition [1]

Preliminary Designs

Structural Analysis

Figure 7: RISA 3D Axial Force Analysis [2]

Vertical Deflection Design
Lateral Deflection Design
Design Fittings/Connections
Final Design

Figure 8: RISA 3D Moment and Deflection Analysis [2]

Buckling

 \Leftrightarrow Flexural Buckling Stress [4]: F_{cr} ♦ Elastic Critical Buckling Stress: $F_e = \frac{\pi^2 E}{\left(\frac{KL}{C}\right)^2}$ \Leftrightarrow If $F_e \geq 0.44F_v$ $F_{cr} = \begin{bmatrix} 0.658^{\frac{F_y}{F_e}} \end{bmatrix} F_y$ \Leftrightarrow If $F_e < 0.44 F_v$ $F_{cr} = 0.877 F_{e}$ Maximum Allowable Compressive Force [4]: P_{μ} \otimes \diamond LRFD: $P_u = \phi_c F_{cr} A_g$ \Rightarrow ASD: $P_u = \frac{F_{cr}A_g}{\Omega_c}$

F _y (psi)	36000	ф	0.9	
E (psi)	29000000	Ω	1.67	
L (in)	42	L/r	125.8691	
D (in)	1.05	F _e (psi)	18065.88	
d (in)	0.824	F _{cr} (psi)	15634.36	
A _g (in ²)	0.332635	P _n (lbs)	5200.534	
l (in ⁴)	0.037036			
r (in)	0.33368		LRFD	ASD
		P _u (IDS)	4680.481	3114.092

Table 2: Buckling Results for D=1.05in [1]

Analysis Methodology

♦ Members: 59

- ♦ Components: 900+
- ♦ Many duplicates
- ♦ ASD vs. LRFD
 - ASD: Allowable Stress
 Design
 - more conservative
 - LRFD: Load and Resistance Factor Design
 - more competitive

Component Size	Length (in)	Max. Comp. Force (lbs) - LRFD
1.05" OD Pipe	72	1614
	36	4680
0.50" OD Tube	42	275
	36	374
1/4" Rod	6	979
	3	1408
1/8" Rod	7	55
	4	168

 Table 3: Example Buckling Results [1]

Tension

* Maximum Allowable Tensile Force: P_u

 $\Leftrightarrow \text{ LRFD: } P_u = \phi_c F_y A_g$

 \Rightarrow ASD: $P_u = \frac{F_y A_g}{\Omega_c}$

Bending

♦ Bending Stress: $σ_b$

$$\sigma_b = \frac{My}{I}$$

Pi	ре	F _y (psi)	36000		φ	0.9
D (in)		A _g (in ²)	0.1131		Ω	1.67
d (in)						
		P _n (lbs)	4071.6			
H	SS					
W (in)	0.5	D (lbc)	LRFD	ASD		
t (in)	0.065		3664.44	2438.084		

Table 4: Tension Results for 0.5" Square Tubing[1]

Figure 9: Bending Failure

Fabrication

- Produce Construction Drawings
- Steel Preparation
- ♦ Welding
- ♦ Finish Fabrication
- ♦ Finishing

Figure 10: Finish Fabrication [2]

Figure 11: Construction Drawings for Superstructure Members

Steel Preparation

Outting
 Outting

♦ Labelling

Figure 12: Finished Cut¹/₂" Sq. Tube Pieces at an Angle [2]

Figure 14: Andrew Preparing Steel Member for Welding [2]

Figure 13: Finished Cut& Cleaned 3/16" Rods [2]

Welding

Figure 15: Jigs for Superstructure Members [2]

Figure 17: Welded Superstructure Members [2]

Figure 16: Andrew Lamer TIG Welding a Superstructure Member [2]

Connections

K-Zell Metals

Figure 20: Connections for Two Substructure Members [2]

NAU Engineering Fabrication Shop

Figure 21: Round Disk Fittings [2]

Figure 22: Fixed Round Disk Fittings [2]

C.E.F.N.S Teaching & Research Machine Shop

Figure 23: Side View of Sleeve Fitting for One Superstructure Member [2]

Pacific Southwest Regional Event

Figure 24: Bridge Building [2]

Figure 25: Built Bridge at Competition [2]

Figure 26: Bridge Building [2]

Final Bridge Summary

- Arched Warren Through Truss
- ♦ 59 separate members
- ♦ Total Weight = 187 lbs

Not Ranked						
School	NR					
California Baptist University	10.3.14:					
Califnoria State University Sacramento	10.8.2:					
Northern Arizona University	11.1:					
California State University Long Beach	11.4:					
California State University, Fullerton	11.4:					
University of California Los Angeles	11.4:					
Cal Poly Pomona	11.5:					
California State University, Fresno	11.5:					
California State University, Northridge	11.5:					
San Jose State University	11.5:					
University of Arizona	11.5:					
University of California, Irvine	11.5:					
University of California, San Diego	11.5:					
University of Hawaii at Manoa	11.5:					
San Francisco State University	11.6:					
Arizone State University	4:					
University of California, Berkeley	None					

Figure 28: Competition Results

Project Impacts & Takeaways

Social

 Involved high school students in realworld engineering project

Environmental

- Designed a low weight bridge resulting in less steel required
- Laser cutting were performed by professionals eliminate harmful emissions exposure
- ♦ Economic
 - Utilized nearest mild steel distributor reduce material transport emissions

- Exposure to basic structural design & fabrication
- Familiarization of structural analysis programs
 - $\otimes RISA$
- Material procurement and shipping

Project Schedule

Staffing Hours

♦ 445 hours difference

♦ Fabrication & Structural Analysis tasks were under anticipated

	Number of Hours											
Task Name	Sr.Eng		Eng		E.I.T		Drafter		Admin		Total Hours	
	Prop.	Actual	Prop.	Actual	Prop.	Actual	Prop.	Actual	Prop.	Actual	Prop.	Actual
Task 1: Project Research	6	2	12	8	18	14	6	2	8	6	50	32
Task 2: Resourcing	12	8	8	4	12	8	12	8	16	12	60	40
Task 3: Structural Analysis	30	76	60	106	75	121	77	123	30	74	272	500
Task 4: Fabrication	6	59	12	75	30	94	32	95	4	57	84	380
Task 5: Construction Practice	3	0	16	3	16	3	4	0	0	0	39	6
Task 6: Project Deliverables	13	9	16	12	30	26	17	13	25	20	101	80
Task 7: Project Management	58	61	56	57	60	63	46	49	13	16	233	246
Staff Total Hours	128	215	180	265	241	329	194	290	96	185	839	1284

Table 5: Proposed vs. Actual Hours for Each Task

Project Cost

Table 6: Breakdown Cost of Steel Bridge Project

		Cost per Unit		# of Actual				Change?
ltem	Description	(\$/unit)	Units	Units		Actual Cost	Proposed Cost	(Y/N)
	Senior Engineer	150	hr	215	\$	32,250	\$ 19,200	Y
	Engineer	115	hr	265	\$	30,475	\$ 21,850	Y
Staffing	E.I.T	58	hr	329	\$	19,082	\$ 14,558	Y
	Drafter	40	hr	290	\$	11,600	\$ 8,160	Y
	Admin	32	hr	185	\$	5,920	\$ 3,072	Y
	Subtotal			1284	\$	99,327	\$ 66,840	Y
Matorial	Nuts & Bolts	0.1	bolt/nut	200	\$	20	\$ 20	N
Wateria	Steel	0.50	lb	400	\$	200	\$ 200	N
	Su	btotal			\$	220	\$ 220	N
	Van Rental	60	per day	8	\$	480	\$ 480	N
Travel	Mileage	0.33	miles	1232	\$	407	\$ 665	Y
	Lodging	155	night (2x)	4	\$	1,240	\$ 480	Y
	Su	btotal			\$	2,127	\$ 1,625	Y
	Welding	60	hr	380	\$	22,800	\$ 1,800	Y
Subcontracted	Plate Cutting	35	plate	54	\$	1,890	\$ 875	Y
Services	NAU Machine Shop	х	Х	х	\$	638	х	Y
	CEFNS Machine Shop	x	Х	Х	\$	405	x	Y
	\$	25,733	\$ 2,675	Y				
Total Project Cost:						127,407	\$ 71,360	Y

Thank you to our sponsors

Figure 29: Praxair

Figure 30: K-Zell Metals

Figure 31: MUHS Welding

PAGE STEEL

Figure 33: Page Steel

Figure 32: Copper State Nuts & Bolts

References

- [1] AISC, Student Steel Bridge Competition 2019 Rules, 2019.
- [2] 2019 NAU Steel Bridge Team
- [3] J. C. McCormac, Structural Steel Design, Upper Saddle River, NJ: Pearson Prentice Hall, 2008
- [4] T. B. Quimby, "A BEGINNER'S GUIDE TO THE STEEL CONSTRUCTION MANUAL, 14th ed.," 30 11 2017. [Online]. Available: http://bgstructuralengineering.com/BGSCM14/Contents.htm.

Disqualification Sections

- ♦ Section 10.3.14: Construction Safety
- ♦ Section 10.8.2: Construction Time
- ♦ Section 11.1: Damage
- ♦ Section 11.4: Lateral Load Test
- ♦ Section 11.5: Vertical Load Test Sequence
- ♦ Section 11.6: Unloading
- Section 4: Eligibility & Conduct

Not Ranked							
School	NR						
California Baptist University	10.3.14:						
Califnoria State University Sacramento	10.8.2:						
Northern Arizona University	11.1:						
California State University Long Beach	11.4:						
California State University, Fullerton	11.4:						
University of California Los Angeles	11.4:						
Cal Poly Pomona	11.5:						
California State University, Fresno	11.5:						
California State University, Northridge	11.5:						
San Jose State University	11.5:						
University of Arizona	11.5:						
University of California, Irvine	11.5:						
University of California, San Diego	11.5:						
University of Hawaii at Manoa	11.5:						
San Francisco State University	11.6:						
Arizone State University	4:						
University of California, Berkeley	None						

Project Materials

Table 4: Summary of steel requested from Page Steel								
Final Steel Requisition List								
Туре	Dimension	Length Ordered (ft.)	Length Received (ft.)					
Pipe	0.540" dia. X 0.088 wall	32	40					
Pipe	0.840" dia. X 0.109 wall	14	20					
Pipe	1.05 dia. X 0.113 wall	36	40					
Pipe	1.315" dia. X 0.113 wall	10	20					
Round Tube	1/2" dia. X 0.065 wall	45	60					
Rectangular Tube	1" x 1/2" x 0.65 wall	113	120					
Square Tube	1/2"	30	40					
Round Bar	1/8"	258	260					
Round Bar	3/16"	82	100					
Round Bar	1/4"	122	140					
Round Bar	1/2"	6	20					
Round Bar	9/16"	2	20					
Square Bar	1/2"	4	20					
Flat	1/2" x 1"	4	20					
Sheets		Size						
11 GA.	1 ft. x 1 ft.							
12 GA.	1 ft. x 1 ft.							
14 GA.	1 ft. x 1 ft.							
16 GA.	1 ft. x 1 ft.							